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Abstract 
 
Computers are now embedded within an enormous variety of resources and works of art, 
and take on tasks in roughly all facets of our life, since we are becoming more linked and 
dependent on technology. Today, a variety of applications in the field of Computer 
science and engineering share the goal to track and understand human anatomy based on 
visual analysis. The interpretation of complex medical images is a difficult task which 
normally requires specialists with years of training. Modern scanning devices produce 
intricate data of large proportions, making it necessary to involve computational methods 
into the interpretation of this data. One of the more challenging aspects of this 
interpretation is the identification and representation of meaningful information, such as 
certain anatomical structures or tissue types. To this extent, in the paper we develop and 
use classification techniques based on transfer functions which operate on multiple value 
domains. These domains are constituted from various properties of the scanned data, 
such as density, gradients or spatial positioning. The images generated through this class 
of techniques allow for a more intuitive representation and interpretation of the 
underlying data. 
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1. Human-computer interaction in our changing world 

 
Major changes have aroused within the computer revolution, which 

cover all aspects of its role. The computer-aided applications in human life and 
behaviour are manifold. Although information systems and sciences in general 
have first and foremost been still on user interface design and the importance of 
human-computer interaction, over the last decades, the computing sciences have 
discussed on this matter [1]. The human-computer interaction emerged as a 
major discipline in computing, with the substantial support of engineering, 
education, behaviour, psychology, graphics [2].  In addition, the study of the 
connection involving humans and computers has rapidly develop into one of the 
most dynamic and significant fields of technical investigation. In spite of its 
short history, Computer science has brought fundamental contributions to 
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Science and society, being a founding science of the contemporary era of human 
history characterized as the Information Age [3]. 

The rapid advancement of Science and technology, particularly in recent 
decades, has brought forth multiple benefits for mankind in terms of health, 
well-being and cognitive freedom. For example, researchers of Artificial 
Intelligence in education have been developing specific materials for adaptive 
learning in complex domains like programming languages, Mathematics, 
Medicine, Physics, industry, Electronics, etc. [4]. Performances in algorithmic 
music composition have been achieved in European concert music for centuries. 
However, once they have been implemented in computer software, these 
systems have expanded into systems of music representation and production [5]. 
Computers play a central role in response to demands of transport operations, 
including public dial-a-ride transportation services, shared-ride taxis, airlines, 
rail transport, etc. Computer aided engineering methods are already applied in 
kinematics and dynamics of mechanical systems [6], drugs design [7], 
manufacturing design [8], Medicine [9]. 
 
2. Computer-aided visual analysis of the human body  

 
The field of medical imaging has benefited to a great extent from the 

development of computer technology. Non-intrusive imaging techniques such as 
Computed Tomography (CT), Magnetic Resonance Imaging (MRI) or 
ultrasound have proven indispensable for the proper diagnosis of multiple health 
conditions. Furthermore, modern scanning devices are not restricted to the 
medical field and have wide applicability in many other branches, such as 
industrial feasibility testing, fault detection in equipment and materials [10], or 
3D seismography [11]. The modern versions of these devices generate complex 
data sets of large proportions, which contain a great deal of potentially useful 
information [12].  

Traditionally, two-dimensional (2D) slices are produced from this data, 
which are individually analyzed by a specialist. However, this is in many cases a 
tiresome and time-consuming task, especially for large scans comprising 
hundreds of slices. Even with a smaller number of slices, expert training in 
radiology is still required for a proper interpretation, making the information 
contained therein inaccessible to the general public. As a solution to this 
problem, the field of volume graphics [13, 14] provides techniques for the direct, 
three-dimensional (3D) representation of this type of data. Normally, a 
radiologist analyzes individual 2D slices and mentally forms a complete picture 
of the originating object. When employing volume visualization techniques, 
images may be generated which approximate the shape and features of the 
scanned object or anatomical structure far more closely, while allowing for the 
visual separation of meaningful information through a careful manipulation of 
colour and opacity. 
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Detecting this information from the entire available data is a complex 
problem which has not been fully solved, given the wide variety of data sets and 
the large number of objects or structures which undergo scanning. The 
classification of this data therefore offers multiple challenges, especially when 
dealing with medical scans, due to the complexity of the human body and the 
small size and elusive nature of the features or structures which often need to be 
detected. The following sections describe various techniques for the 
classification of volume data originating from medical scans. We show how 
multiple criteria can be used for feature separation, and employ various types of 
so-called transfer functions to generate colour and opacity from the originating 
data, based on these criteria. 
 
3. A scientific case study against visual analysis of the human body through  
 volume classification 
 
3.1. Volume data sets and classification techniques  
 
  A 3D medical scan originating from various scanning devices may be 
assembled into a volume data set, which may then be subjected to reconstruction 
and visualization techniques that produce a volume object [15]. Such an object is 
constituted from atomic elements referred to as voxels, the 3D equivalents of 
pixels [16]. Therefore, a volume data set may be seen as a 3D volumetric 
representation of an object. By applying projection transforms, a 2D image may 
be generated from this data, which is then represented on screen for visual 
analysis. However, not all voxels are part of interesting or useful information. 
From the entire data set, only certain features or structures may be of interest, 
such as, for instance, blood vessels, certain types of tissues, etc. Therefore, 
proper classification of the data is required, which involves the detection and 
separation of useful voxels, while discarding the rest. Most commonly, the 
useful information contained within a volume constitutes a rather small 
percentage of the entire available data. This point is illustrated in Figure 1. A 
rendering of a 3D medical scan is shown, along with a bounding box which 
circumscribes the entire data set. The visible structures are in the centre and it 
can be easily calculated that they constitute about 23% of the whole data set. 
Therefore, 23% of the voxels in this image are opaque or semi-transparent, while 
the rest are invisible. The information which presents interest has been visually 
separated from the rest of the data based on differences in opacity. Furthermore, 
colour and various degrees of transparency are used to highlight various 
structures within the visible object: bone is visually separable from skin and 
other tissue types. 

Figure 2 illustrates a simple case of volume classification: assign certain 
levels of opacity and colour to meaningful information, and eliminate the rest by 
making it transparent.  
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Figure 1.  Rendering of a medical volume; various tissue types are visible, while the 
bounding geometry encompasses the entire data set. 

 
 

 

 
 

Figure 2. Transfer function specification: (a) various types of tissues are separated based 
on differences among their densities; (b) a more feature-centric approach clearly 

highlights specific tissue types, specifically, blood vessels. 
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Classification is an important step in the volume rendering pipeline and it 
has to be implemented explicitly since volume data does not in itself contain 
information on structures, features or anatomical parts. A data set is in fact a 
three dimensional array of scalar values, which each such scalar value 
corresponding to a voxel from the volume. Therefore, each voxel has an 
associated number, which is a rough indicator of the physical properties of the 
material from the corresponding scanned object. The values often indicate the 
density of the material, thus, voxels with lower scalar values are typically part of 
lower density areas from the volume (such as softer tissue, cavities etc), while 
higher scalar values indicate higher density regions (bone tissue, metal). 
Furthermore, the initial data does not provide any optical information (colour, 
opacity), which is needed for the generation of images. It is up to the developers 
to implement proper classification techniques which allow the identification of 
useful information, while at the same time assigning colour and opacity to each 
voxel so that they may be represented on a display. 

Volume classification techniques mostly fall within two categories:  
• segmentation, which typically takes place in a pre-processing step and 

identifies one or several distinct objects within the data. Each voxel is 
assigned an object ID that indicates which of the identified objects it 
belongs to. Segmentation algorithms are typically decoupled from the 
rendering stages; therefore, each identified object may be represented via its 
own rendering method. When generating a final, on-screen image, objects 
may overlap or occlude each other, which creates the situation where pixels 
colours result from a combination of one or multiple object [17, 18]. 

• transfer functions constitute a broad category of classification methods, 
which involve the use of various mapping functions to assign colour and 
opacity to the voxels inside a volume, based on one or multiple criteria. 
Usually, a transfer functions assigns colour and opacity (RGBA values) to a 
subset of voxels sampled from the volume. Subsequently, the colours of the 
on-screen pixels are assembled from the RGBA values of the sampled 
voxels [19].  

In this paper, we focus on transfer function-based classification, 
specifically, on the various domains in which transfer functions may operate. We 
define these domains based on various voxel properties, such as scalar value, 
gradient magnitude, curvature or spatial position. These properties are, in fact, 
criteria for classification; with each added criterion, increasingly complex and 
hard-to-detect features may be identified and represented. Transfer functions are 
an important component of the volume rendering process and are the main factor 
which decides the colours of the resulting image. As mentioned, volume data 
itself does not contain information on colour and opacity, which is required for 
the simulation of light interaction and the implementation of shading and 
rendering algorithms. A transfer function (Tf) therefore bridges the gap between 
non-optical voxel properties v1,...,vn and the optical characteristics (RGBA 
quadruplets) required for visual representation (Equation 1). 
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3.2. Data-based transfer functions 
 
 The most basic transfer functions directly operate on the scalar values of 
the voxels from the originating data set. Each voxel has one such value, and the 
range of these values constitutes the domain of the transfer function [20]. The 
scalar values commonly indicate the density of the corresponding media. For 
each density level, a data-based transfer function specifies certain colour and 
opacity values.  Various structures and shapes may therefore be isolated from the 
full data set by virtue of the fact that their densities are distinct from other, 
surrounding elements. Figure 2 illustrates the specification and use of a data-
based transfer function. We have implemented a manual means of defining the 
transfer function, as shown at the bottom of Figure 2. The shape of the function 
is clearly visible and adjustable in the interface: the horizontal axis contains 
density levels (which correspond to the values from the original data set), while 
the vertical axis represents opacity. The circular controls are used to define the 
opacity, while the triangular ones specify colour values. Certain elements of 
interest such as bone or blood vessels are assigned a higher opacity and 
distinctive colours, making them easily identifiable from the rest. The shape of 
the transfer function may be adjusted as needed, so as to highlight meaningful 
anatomical structures. 

The transfer function is generated from the control points via Catmull-
Rom interpolation [21], for a smooth transition between domain values. The 
shape depicted in the interfaces from Figure 2 determines the distribution of 
opacity values among density levels. Lower density material such as skin is 
assigned lower opacity so that it does not occlude other anatomical structures 
located toward the centre of the volume.  

While this approach offers great flexibility when classifying volume data, 
it also comes with drawbacks. Specifically, it is unable to separate anatomical 
structures or tissues which share the same density. Any set of voxels which 
contain the same scalar values are treated as belonging to the same object, 
though this may not always be the case. This necessitates the use of other 
classification criteria, as elaborated upon in the following sections. 
 
3.3. Gradient-based transfer functions 
 

The gradient vector (or gradient, in short) is a measurement of the 
variation of scalar values from the volume data set. Considering that the volume 
is described by a function V : R3 → R , which assigns a scalar value to each 
position from a region in 3D space, the gradient is a three-component vector 
composed of the partial derivatives of V along the three directions, x, y, z 
(Equation 2). 
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The direction of the gradient shows a variation of scalar values, which 

may suggest meaningful surfaces in the volume. The gradient magnitude 
indicates the degree or significance of the change, thereby pointing out the 
amount of difference between the materials located on either side of a bordering 
surface [22]. In practice, we approximate the gradient using central differences. 
For any position in the volume, we sample pairs of voxel values on either side of 
that position, one pair for each axis. The differences among the three pairs 
closely approximate the components of the gradient. Considering that the 
samples are taken at distance d from the target position, the gradient is computed 
as shown in Equation 3. 
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Gradient-based transfer functions operate on gradient magnitudes, rather 

than densities. We use these functions to classify data and identify structures that 
could not be isolated using data-based means alone. The images in Figure 3(a) 
and Figure 3(b) are generated using data-based and gradient-based classification, 
respectively. While data-based classification can easily separate high density 
material such as teeth, it makes it difficult to highlight various other features 
located in the vicinity of the skull cavity. These have density values similar to 
other occluding structures. However, they are identifiable using a gradient-based 
approach, which excels at determining the borders between different media. 
Figure 3(b) shows how, using gradients, other more problematic structures can 
be identified, such as the sinus cavity or the metencephalon. 

Two or more structures with overlapping density ranges have, in most 
cases, different surface properties, making them good candidates for gradient-
based classification. While they have densities similar to their neighbours, their 
outlining surfaces make them unique. 

 
3.4. Curvature-based classification 
 
 Curvature values quantify the flatness of a surface or region. The flatter 
the surface in a specific spot, the lower the curvature for that spot. Conversely, 
where valleys and ridges are present, or where the surface is highly irregular, 
curvature values are correspondingly high. Traditionally, the computation of 
local curvature relies on complex convolution operations, which involve the 
computation of the second derivative of the volume function [23]. Other 
methods are tailored for ray casting-based direct volume rendering approaches 
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and involve the approximation of curvature values along projected rays [24]. 
Once curvature values are obtained, their range may constitute the domain of 
transfer functions, wherein opacity and colour are assigned based on the level of 
deformation of the local surface.   
 

 

 
Figure 3. Classification using: (a) a data-based transfer function; (b) a gradient-based 

transfer function. The latter excels at detecting meaningful surfaces as opposed to solid 
structures and is capable of revealing additional features. 

  
 

Figure 4. Approximation of local curvature: (a) gradient vectors on either side of the 
target position form an angle, thus indicating a "bump" in the local surface; (b) when 

gradient vectors are nearly parallel, the local surface is almost flat. 
     

 We calculate curvature values based on an approximation method. 
Specifically, for any arbitrary position in the volume, we evaluate the local 
curvature by computing the differences between the angles of neighbouring 
gradient vectors. Since gradients indicate the orientation of local bordering 
surfaces, the greater the angle between consecutive gradients, the greater the 
curvature in the immediate neighbourhood (Figure 4). 

Similar to the approaches used in Section 3.2., we sample neighbouring 
gradient pairs along each axis and evaluate the angle in-between the gradients in 
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each pair. The result is a three component vector; the local curvature is indicated 
by its magnitude. This is illustrated in Equation 4, where the curvature value k in 
position (x, y, z) is the magnitude of the vector formed by the dot products of 
gradients sampled at distance d and normalized. 
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Figure 5 shows a rendered image where local curvature is used to identify 
regions according to their level of deformation. In the darkest spots, the depicted 
surface forms narrow angles, thus the corresponding curvature value is high. 
Such areas which exhibit high curvature are useful for highlighting significant 
contours around irregular anatomical features. The identification of such 
contours is important for isolating regions with similar surface characteristics. 
 

 

 
 

Figure 5. Volume rendering where local curvature is shown though greyscale levels 
(darker regions have a greater degree of irregularity and higher curvature values). 

 
3.5. Distance-based classification 
 
 In previous sections, the transfer function domains have so far been based 
on or derived from the scalar values from the data set.  Conversely, distance-
based classification accounts fro the spatial positioning of the voxels. This 
constitutes an additional, independent means of separating regions in the 
volume. The main idea is that the voxels should be classified according to their 
distance from a focal region. Such regions may be constituted from a single 
point in volume space, or an entire pre-identified substructure from inside the 
volume [25]. Distance-based transfer functions operate on a domain constituted 
from the pre-computed distances between each voxel and the chosen focal 
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region. We used distance based classification alongside the more classic, data-
based transfer function, to render a more complete picture of the dataset; thus, 
the color and opacities assigned as a result of scalar value-based classification 
are modulated by a distance-based transfer functions, thereby revealing regions 
not easily classifiable using data-based means alone.  
 The approach first involves the establishment of a focal region. We 
exemplify by selecting a point roughly in the middle of the volume. Distances 
from the point to every voxel are then pre-computed and stored in a distance 
volume. A distance-based function is defined, which operates on the values 
stored in the distance volume, as opposed to the original scalars generated by the 
scanning device. The opacity values of voxels are then tweaked using this new 
criterion, i.e. voxels which are at certain distances from the focal point have 
certain opacities. Figure 6 depicts the usage of distance-based classification. The 
image in Figure 6(a) is rendered using a traditional data-based transfer function, 
which assigns opacity and colour. In Figure 6(b) a secondary, distance based 
transfer function is used to modulate the opacity around the centre of the volume 
(the focal point), which is adjusted so that the area in the vicinity of the centre is 
visually removed. This reveals additional structures and details within the 
volume, while preserving the opacity of the outer ‘shell’, which constitutes 
context information.  
  

 

 
 

Figure 6. Images generated using distance-based criteria: (a) using a data-based transfer 
function; (b) adding distance allows for the removal of voxels around the centre of the 
volume; (c) and (d) two different views of the same volume generated via focal plane-

based distance. 
 
 Distance based classification need not be restricted to focal points. 
Indeed, virtually any geometry can be used. In the simplest case, the distance 
values can be computed in relation to a focal plane, which may have any 
arbitrary orientation. The constituents of the volume are then separated based 
on their distance from the plane. A result of this approach is visible in Figure 
6(c) and (d), where, as previously, data-based and distance-based transfer 
functions are used to visually separate and group voxels into volumetric slices. 
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This approach has an effect similar to the use of multiple clipping planes [14], 
but with several advantages. First, setting up and manipulating multiple 
clipping planes can become tedious; a distance transfer function can recreate 
the same effect from a single user interface element, similar to the one from 
Figure 2. The use of a transfer function generated via smooth interpolation 
allows for certain areas to transition smoothly from fully opaque to fully 
transparent. In Figure 2, sharp slices through the volume, toward the left side, 
are simultaneously generated alongside smoother transitions near the centre-
right. The effect is achieved from the same transfer function; no further 
clipping algorithms are necessary. 
 
7. Conclusions 
 

In this paper we have so far explored the use of multiple criteria for the 
isolation of meaningful information from medical scans. This presented a 
number of challenges, due mostly to the complex nature of the data involved. 
Through the use of volume rendering techniques, a scanned object may be 
represented as a 3D construct, while most of the relevant information can be 
represented in a single image. One of the most important aspects of this process 
was the classification stage, where relevant information as isolated from the rest 
of the data. This was achieved through the use of transfer functions, which 
assigned colour and opacity to the constituents of the volume, while being 
capable of operating on multiple domains. The first such domain was generated 
from the range of initial scalar values. This allowed for the isolation of various 
anatomical features such as bone and blood vessels based on differences in 
density. However, additional criteria were needed when this form of 
classification had reached its limitation. We then used gradients and curvature 
values to further refine the classification process. While gradient magnitudes 
proved useful for revealing significant surfaces, the computation of curvature 
yielded the possibility to identify features such as valleys, ridges, and, generally 
speaking, surface components which exhibited deformations and irregularities. 
Finally, accounting for the spatial distance of volumetric structures from an 
explicitly-selected focal geometry offered an additional strong criterion for 
classification. Removing the voxels around a specified focal point revealed 
additional anatomical structures in the immediate neighbourhood, while 
adjusting opacities based on the distance from a focal plane allowed the efficient 
emulation of clipping geometry.  
 Such techniques, along with multiple others from within the field of 
volume visualization allow for the generation of high quality images for the 
efficient and intuitive visual analysis of the underlying data. Future, subsequent 
developments in this area will focus on refining developing further 
classification methods based on additional, more complex criteria, such as 
visibility, occlusion or user-centric information which involve semantics or 
more advanced, intelligent and reactive visualization pipelines.   
 



 
Gavrilescu/European Journal of Science and Theology 8 (2012), 4, 159-170 

 

  
170 

 

References 
 
[1] A. Peslak, J. Inform. Technol. Educ., 4 (2005) 189. 
[2] A.  Dix, J. Finlay, G.D. Abowd and R. Beale, Human – Computer Interaction, 3rd  

edn., Pearson Education Ltd., Harlow, 2004. 
[3] M. Castells, The Rise of the Network Society: The Information Age: Economy, 

Society, and Culture, Vol. 1, John Wiley & Sons, New York, 2011. 
[4] B. Wasson, Comput. Hum. Behav., 13 (1997) 571. 
[5] C. Ariza, An open design for computer-aided algorithmic music composition: 

athenaCL, Doctoral Thesis, New York University, New York, 2005, 1. 
[6] E.J. Haug, Computer-Aided Kinemetics and Dynamics of Mechanical Systems, 

Allyn and Bacon, Boston, 1989, 1. 
[7] C.-Y. Yang, D. Bernard and S. Wang, Basic Principles and Practices of Computer-

Aided Drug Design, in Chemical genomics,  H. Fu (ed.), Cambridge University 
Press, Cambridge, 2012, 259. 

[8] S, Kitayama, N. A. Nasser, P. Pilecki, R. F. Wilson, T. Nikaido, J. Tagami, T. F. 
Watson  and  R. M. Foxton, Acta Odontol. Scand., 69 (2011) 182. 

[9] P. Welter, J. Riesmeier, B. Fischer, C. Grouls, C. Kuhl and T. M. Deserno, J. Am. 
Med. Inform. Assoc., 18 (2011) 506. 

[10] M.M. Malik, C. Heinzl and E. Gröller, Journal of WSCG, 17 (2009) 17.  
[11] M. Gavrilescu and V. Manta, Env. Eng. Manag. J., 10 (2011) 4. 
[12] I. Nica, V. David, V. Dafinescu, A. Salceanu and C.-G. Haba, Env. Eng. Manag. J., 

10 (2011) 4. 
[13] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler and M. Gross, Comput. Graph. 

Forum, 24 (2005) 3. 
[14] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama and D. Weiskopf, Real-Time 

Volume Graphics, AK Peters, Wellesley, 2006. 
[15] C. Lazarescu, V. David and I. Nica, Env. Eng. Manag. J., 10 (2011) 4. 
[16] H. Nguyen, GPU Gems 3, Addison-Wesley Professional, Boston, 2008. 
[17] J.-S. Prassni, T. Ropinski and K. Hinrichs, IEEE T. Vis. Comput. Gr., 16 (2010) 6. 
[18]  I. Viola, A. Kanitsar and E. Gröller, Hardware-based nonlinear filtering and 

segmentation using high-level shading languages, Proc. of IEEE Visualization, 
IEEE Computer Society, Seattle, 2003, 309-316. 

[19] G. Kindlmann, Transfer functions in direct volume rendering: design, interface, 
interaction, SIGGRAPH Course Notes, ACM SIGGRAPH, Boston, 2002. 

[20] J. Kniss, G. Kindlmann and C. Hansen, IEEE T. Vis. Comput. Gr., 8 (2002) 3. 
[21] E. Catmull and R. Rom, A Class of Local Interpolating Splines, in: Computer Aided 

Geometric Design, Academic Press, New York, 1974, 317-326. 
[22] M. Gavrilescu, V.  Manta and E. Gröller, Gradient-Based Classification and 

Representation of Features from Volume Data, Proc. of 15th International 
Conference on System Theory and Control, IEEEXplore, Sinaia, 2011, 128-134. 

[23] J. Hladuvka, A. König and E. Gröller, Curvature-based transfer functions for direct 
volume rendering, Proc. of Proceedings of Spring Conference on Computer 
Graphics and its Applications (SCCG 2000), IEEE Computer Society, Washington, 
2000, 58-65. 

[24] S. Bruckner and E. Gröller, Comput. Graph. Forum, 26 (2007) 3. 
[25]  A. Tappenbeck, B. Preim and V. Dicken, Distance-based transfer function design: 

specification methods and applications, Proc. of SimVis, @INPROCEEDINGS, 
Magdeburg, 2006, 259-274. 

 


