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Abstract 
 

Johannes Kepler raised the problem of the incommensurability of the construction of the 

heptagon in the ‘Harmonices mundi libri’ V, (1619). Thus, he stated that the entities 

susceptible of knowledge, and how such a figure, whose formal description is 

impossible, are not susceptible to that knowledge. Therefore it cannot be known by the 

human mind, being beyond the finite that the Creator constructs. The work had an 

inquisitorial response in the ‘Manifiesto Geometrico’ (1684) by the Dominican Ignacio 

Muñoz, dedicated to the construction of the heptagon through the isosceles triangle 

(9,9,4). The Dominican friar died without knowing that his method, using a 

commensurable ratio (9:4), similar to that on the ‘geometria fabrorum’ of the Gothic 

architects in the heptagonal apses, it would be one of the precise methods that practical 

geometries have developed up to the 21st century.  
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1. The unknown heptagon of the ‘Harmonices mundi’ 

 

Johannes Kepler (1571-1630), a Protestant scientific, raised the problem 

of the incommensurability of the construction of the heptagon in the Harmonices 

mundi libri V [1]. It was after explaining to his Catholic friend Hans Georg 

Herwart von Hohenburg (1553-1622) that the celestial machine was not created 

as a divine animal, but as a clock governed by a force that can be expressed 

mathematically [2]. He explains it from his acquaintance with the Swiss 

watchmaker and mathematician Jost Bürgi (1552-1632), who moved to Prague 

in 1603 and is quoted in the XLV. Propositio dedicated to the construction of the 

heptagon [3]. Quite a revelation after his first astronomical work Prodromus 

dissertationum cosmographicarum, continens mysterium cosmographicum 
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(1596), (The Sacred Mystery of the Cosmos), in which the construction of the 

Universe was ordered with the expansion of the regular polyhedra of Platonic 

base, cube, tetrahedron, dodecahedron, icosahedron and octahedron. It was 

provided in a numerical origin of integer number base [4] (Figure 1a), and it will 

be the cosmological ordering of the regular figures of the Caput 1, Lib. V of the 

Harmonices mundi [1, p. 180-182] (Figure 1b). 

 

 
Figure 1. Johannes Kepler’s regular polyhedral: (a) Prodromus dissertation num 

cosmographicarum (1596) [4, Tabula III, https://www.e-rara.ch/doi/10.3931/e-rara-445], 

(b) Keppleri Harmonices mundi libri V (1619) [1, p. 181, https://www.e-rara.ch/zut/ 

content/titleinfo/2434556]. Detail: Terms of Use, Licence, Public Domain Mark 

 

 
Figure 2. (a) Heptagon Book by Archimedes (287-212aC), (b) approach to Archimedes’ 

method. Author’s figure. 
 

Kepler deals with the analysis of the heptagon from the decomposition of 

the five congruent inner triangles that can be formed with the seven vertices. 

Two of them are opposite to the third, according to the tradition of the Heptagon 

Book by Archimedes (287-212 BC) (Figure 2a), in which he approaches the 

figure from purely mathematical aspects [5] (Figure 2b). This knowledge was 
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transmitted by Abu Ali al-Hasan ibn al-Haytham (c.965 - c.1040) [6], with two 

ways of dealing with the study of the figure. On one hand from the proportional 

division of the segment into three parts by Abu Sahl Waijan ibn Rustam al-Quhi 

(c.940 - c.1000) and on the other hand through the trisection of the angle by Abu 

Said Ahmad ibn Muhammad Al-Sijzi (c.945 - c.1020) [7]. 

Kepler knew well the reference of the heptagon by Cristoforo Clavio 

(1538-1612) from the Geometria practica (1604) Theor 12. Propos. 30. He 

analysed the tracing outlines of Albert Dürer (1471-1528), Carolus Marianus 

Cremonensis (f.1599) (Figure 3a) and François de Foix de Candale (1502-1594) 

[8]. In addition with Jost Bürgi (1552-1632) and Pier Francesco Malaspina 

(1550-1624) (Figure 3b) [9]. He states that the figure could not have been 

constructed consciously, nor could it have been made by the methods used so 

far. Therefore it cannot be confirmed if they really could have done it or whether 

they did it by chance. He will replicate Girolamo Cardano’s solution of the 

heptagon as set out in the Nuremberg editions of Subtilitate Libri XXI [10] and 

extended in the Lyon edition [11]. He considers the construction of the heptagon 

by the inner scalene triangles with the proportio reflexa [12]. Kepler also warns 

that it is not necessary to be a geometrical expert to see that Dürer’s proposal is 

mistaken when he suggests taking the side of the heptagon equal to half the side 

of the equilateral triangle inscribed in a circle as an approximation of the square 

root  of the side of the heptagon with respect to the radius of the circle 

(Figure 4b) [13]. 

 

 
Figure 3. Heptagon tracings: (a) Marianus Cremonensis (f. 1599), (b) Pier Francesco 

Malaspina (1550-1624). Author’s figure. 
 

The research deals with the criticism made by the Dominican friar Ignacio 

Muñoz Pinciano (c.1608-1685) in the Manifiesto geometrico (1684) [14], who 

claims to have discovered a method of tracing the heptagon, against the 

development of the figure determined by Kepler whom he accuses of being a 

heretic. The Dominican will construct the figure through the isosceles triangle 

(9,4,9) using the commensurable relation (9:4) between the side of the heptagon 
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and its diagonal, similar to that of the geometria fabrorum of the layout of the 

heptagonal apses of the Gothic architects. The author belongs to the group of 

second order mathematicians in the reign of Charles II (1665-1700) led by 

Father José de Zaragoza (1627-1679), Juan Caramuel Lobkowitz (1606-1682) 

and Antonio Hugo de Omerique (1634-1705) [15]. 

 

 
Figure 4. Regular heptagon tracings by Underweysung der Messun (1525) Albert Dürer: 

(a) pentagon tracing (LII.15) [16, fol. 27 r], (b) heptagon tracing (LII.11) [16, fol. 26 r]. 

Author’s figure. 

 

2. The practical constructions of the heptagon 
  

The most widely used practical construction of the heptagon that has 

come down to us determines the side of the regular heptagon as the height of the 

equilateral triangle of side equal to the radius inscribed in the circumference of 

Albert Dürer’s Underweysung der Messung. It is a consequence of the corollary 

of the pentagon tracing (LII.15) (Figura 4a), in addition to Kepler’s own method 

of the heptagon figure (LII.11) criticized by Kepler (Figura 4b) [16]. 

This method was explained (Inst. 25, fig. 9) in L’architettura civile, 

preparata su la geometria e ridotta alle prospettive by F. Galli-Bibiena (1657-

1743) [17] and Matila C. Ghyka’s (1881-1965) Esthétique des Proportions dans 

la Nature et dans les Arts (1927) [18]. The origin of these practical layouts can 

be traced back to the Kitāb fī mā yaḥtāju al-ṣāni’ min al-a’māl al-handasiyya 

(Book on those geometrical constructions which are necessary for craftsmen) 

(c.993-1008), by Mohammad Abu’l-Wafa Al-Buzjani (940-998) (Figure 5a) 

[19]. It arrived to the Latin West through Ibn Yūnus, Ka māl al-Dīn (1156-1242) 

with the Sharh: a’māl al-handasiyya li Abū al-Wafā (1240), (Commentary on 

Geometric Constructions by Abu’l-Wafa’) at the court of Emperor Frederick II 

(1194-1250) [20]. The dissemination was done through Geometria Deutsch 

(1472) attributed to Hans Hösch von Gmünd (f. 1472) [21] and the Geometrie 

Deutsch (1488) by Matthäus Roriczer (+c. 1495) (Figure 5b) [22]. While the 
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trisection of the angle will be developed in the Latin West by Jordanus 

Nemonarius (1225-1260) in the Geometria vel de triangulis libri IV, (Liber IV, 

23) [23], being the link with the classical tradition with Varii de Rebus 

Mathematicis Responsi, Liber VIII (1593) by François Viète (1540-1603) and his 

Protasis IV Theorema [24]. 

 

 
Figure 5. Regular heptagon tracings: (a) Abu'l-Wafa Al-Buzjani (c.993-1008), 

(b) Matthäus Roriczer (1488). Author’s figure. 

 

Another possible classical connection to the construction of the heptagon 

is based on the proportion between the side of the polygon inscribed in the 

surface of a heptagon and its diameter, which is the case of the pseudo-Heronian 

Metrica, attributed by Hero of Alexandria (c.20-62) (I, 29 Theorem 54), 

Dimetiendi rationes (I, XX). Starting from the regular hexagon, Heronis deduces 

that the equilateral triangle constructed by using the radius, to which he assigns a 

length of 8 units, it is 7 units high. Hence in proposition a heptagon of side 7 has 

a radius of 8, providing the proportion with the circumference diameter of 16:7 

[25]. Other approaches can be found in Pseudogeometría Geometry II by 

Boethius defined in De multiangulis figuris, De eptagoni [26]. Similarly, an 

approach can be found in the work of Giorgio Valla (1447-1501), De expetendis 

et fugiendis rebús, with one part dedicated to the six books of Geometry [27]. 

Kepler claims to deal with entities susceptible of knowledge, and the 

heptagon is not among these entities, since its formal description it is impossible, 

and therefore it cannot be known by the human mind. The possibility of 

constructing the figure, it is a priori, the possibility of being able to be known; 

for this reason, it cannot be known by the omniscient mind as a simple eternal 

act either, since, he says, its nature is amongst the unknowable things. 
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3. The ‘Manifiesto geometrico’, fray Ignacio Muñoz and the apology  

against Kepler 

 

The Dominican Ignacio Muñoz had a troubled scientific life in Manila 

where he arrived in 1635 until his return in 1665 via New Spain, with a stopover 

in Mexico (1665-1669). He arrived at the Court of Charles II in 1670, publishing 

in 1684 the Manifiesto geometrico, plus ultra de la geometria practica in 

Brussels by Francisco Foppens (c.1600-1685) in 1684. The work was finished in 

1678 and sent in 1683 to the Duke of Béjar and Plasencia, Manuel López de 

Zúñiga (1657-1686) to whom he dedicated the work and who acted as a patron 

(Figure 6a). 

 

 
Figure 6. Manifiesto geometrico, (1684) Fray Ignacio Muñoz: (a) Frontisphice [14],  

(b) isosceles triangle inscribed in the heptagon [14, fig. 1], (c) isosceles triangle of the 

heptagon [14, fig. 2] [Biblioteca Nacional de España, Madrid (BNE), Sig. 3/48498, 

https:c//thales.cica.es/rd/Recursos/rd97/Otros/01_1_b.html] 

Detail: Terms of Use, Licence, Public Domain Mark. 

 

In the title of the work the Very Reverend Father Padre Fray Ignacio 

Muñoz, he adds Master of Theology, of the Order of Preachers, a position he 

held during his stay in Manila (1635-1665) at the College of Saint Thomas in 

Goa [28]. Also he obtained the position of ‘Full Professor of Mathematics at the 

Royal University of the Mexican Empire’, during his stay in Mexico (1665-

1669) after the death of the Mexican Mercedarian religious Diego Rodríguez 

(1596-1668) [29]. The professorship had been created in 1637, and he held it 

until 1672, on his return to Spain. Later the creole Luis Becerra Tanco (c. 1602-

1672) was appointed to the post but he held it only for three months, then it was 

taken over by the Mexican Jesuit, Carlos Sigüenza Góngora (1645-1700) [30]. 

Finally Fray Ignacio Muñoz was established as Reformer by His Majesty of 

Universal Hydrography and in particular of everything that is navigated in the 

https://thales.cica.es/rd/Recursos/rd97/Otros/01_1_b.html
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Ocean Sea and the Mediterranean, a title granted by the Court in October 1670. 

This position was presented to the Council of the Indies in July 1670, and it was 

endorsed by Father José de Zaragoza [28]. 

In the dedication of the Manifesto, fray Ignacio explains the request that 

the Duke of Béjar and Plasencia asked the Portuguese military Count of the 

Torre, Juan Mascareñas (1633-1681). He requested an expert opinion on the 

problem of the isosceles triangle of the heptagon from the Major Cosmographer 

of Portugal, Luis Serrán Pimentel (1613-1679). In the reply in 1677, before 

being finished the Dominican’s work, he raised the difficulties of the solutions 

for the construction of the heptagon, naming the proposed by Carolus Marianus 

Cremonensis, François de Foix de Candale, Oroncio Fineo (1494-1555), Pedro 

Nunes (1502-1578), Johannes Kepler, François Viète and José Zaragoza y 

Vilanova. The difficulty of the resolution of the problem faced by Fray Ignacio 

Muñoz is expressed by Pimentel, who requires: “If this Gentleman has found 

them, it will be something for which great glory will result for them”, a quote 

used by the Dominican in his dedication of the Manifesto. 

 

 
Figure 7. Figure construction. Observationes diversarum artium (1669), fray Ignacio 

Muñoz [BNE Mss/7111]: (a) hexagon (fol. 31), (b) pentagon (fol. 32).  

Detail: Terms of Use, Licence, Public Domain Mark. 

 

Other manuscripts by the Dominican friar are known, such as: the 

Observationes diversarum artium (1669) [BNE, Mss/7111] (Figure 7); 

Directions of the seas of Morocco, the Canary Islands, America and the 

Philippines, and other documents (1669-1686) [BNE Mss/7119]; The geometric 

synóptic and universal operation to divide any rectilinear angle into the equal or 

proportional parts that are requested (1670) [Manuscrito Real Academia de la 

Historia, Madrid (M-RAH), 9/2782]; The Communication sent to the Jesuit José 

Zaragoza, following a past discussion on the work of Gregoire de Saint-Vincent 

in which he will try to demonstrate the squaring of the circle [M-RAH, 9/3638] 
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and Memorial and hydrographic manifest in which it is shown that all of Rio de 

la Plata and its island of San Gabriel and all the other islands and lands that 

bathe this mighty river are and belong to the conquests and domain of the 

Crown of Castile [M-RAH, 9/2810].  

Other documents have disappeared, such as the Demostratio Geometrica 

trianguli Ysosceles, in Heptagono regulari; Geometría práctica; Novus 

Geometricae thesaurus; Hydrographia Universalis et particularis practica et 

speculativa; Descriptio currum siam; Architectura communis, and Tabula 

declinationis solis et stellarum [31].  

Finally there are some unfinished works such as Nuevo Tesoro, y Plus 

Ultra de la Geometria Practica in which he wanted to deal with odd-sided 

figures; 9-11-13-15-17 and 19 [14, p. 29]. He also draws the first planimetry of 

Manila, Descripción geométrica de la ciudad y circunvalación de Manila y de 

sus arrabales al Consejo de las Indias. Por el Padre Maestro Fray Ignacio 

Muñoz, del Orden de Predicadores. Año 1671 [Archivo General Indias, Sevilla] 

[32]. 

The Manifesto is divided into two different parts, the first dedicated to the 

construction of the heptagon as an addition to Euclid’s Elementa [14, p. 1-19], 

with the isosceles triangle proper to the septangle (9,4,9). He uses a 

commensurable arithmetical geometrical relation (9/4) (Figure 6b). The second 

part will be considered by the Dominican friar as a philosophical, geometrical 

and religious defence against the considerations on the figure of Kepler’s 

heptagon [14]. He ends the work by pointing out that, although Kepler is already 

condemned in the Expurgatory of the General Inquisition of the Hispanic index 

of 1640, the Harmonices mundi was not [33] and, therefore, it should also be 

condemned, alluding to Psalm 41, Abyssus abysum invocat, (one mistake calls 

for another). Especially damnable are the propositions 45 and 47 of the first 

book concerning the figures of heptagon and nonagon. The German astronomer 

already appeared in the general index of the Novus Index Librorum 

Prohibitorum et Expurgatorum (1632), as author [+Ioannes Keplerus] and 

classified Append. Libr. Proh& Exp. I Class. The index of his work, Harmonices 

mundo, appears only with the caveat of the dedication to James VI King of 

Scotland and I King of England (1566-1625) and he considers him, Rex inter 

Reges, Fidei Defensor inter Cristi fideles (The king, between the kings, 

Defender of the Faith of Christ among the faithful) [34]. 

The principle of this heresy is based on the assumption that Kepler 

claimed that the eternal Wisdom of God cannot have science for the figure of the 

heptagon because this figure lacks of scientific knowledge. As a consequence, he 

considered the cognoscibility of the figure as an impossible simpliciter, therefore 

as God did not have science, the heptagon could not have it. In order to reach 

this conclusion, fray Ignacio had reasoned on the axiomatic principle of the 

Metaphysical Schools. What it has no entity and no essence, it has no conditions, 

nor properties, accusing Kepler of doubting this principle. As it was impossible 

to inscribe the figure in the circle, based on the isosceles triangle, whose major 

angle is three times the minor, as fray Ignacio had demonstrated, then the 
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Metaphysical principle was not fulfilled in the heptagon, nonagon and in the 

figures of odd number and therefore they could not be considered impossible 

simpliciter.  

Fray Ignacio had done so for purely mathematical reasons. He accuses 

Kepler of not knowing the isosceles triangle proper to the heptagon, the 

pentagon, as well as those of the 15-sided polygon, as Cardano and Candale had 

dealt with it. He refutes the non-constructability of the heptagon and the 

nonagon proposed by Kepler. Fray Ignacio understood that the mathematical 

instruments of Algebra and Geometry had to be capable of constructing any 

figure. Therefore it is surprising that Jost Bürgi did not do it through Algebra, or 

that Dürer, Candale, Carolus Marianus and the Marquis of Malaspina, had not 

achieved it through Geometry. It cannot be concluded, like Kepler, that the 

heptagon lacks cognoscibility and Science. He announced that he would soon 

publish the solutions of the polygons of 9, 11, 13, 15, 17 and 19 sides. 

 

4. The construction of the regular heptagon by fray Ignacio Muñoz 

 

In the manuscript of the Observationes diversarum artium (1669) it is 

possible to trace the reference works he may have had to acknowledge the figure 

of the heptagon. At the beginning of the Geometria (fol. 1-48) he quotes the 

Geometria practica by Cristoforo Clavio (1538-1612) in the 1606 edition in 

which he deals with the figure of the heptagon in Lib. VIII, Theor. 12 Propos. 30 

[35], the 1604 edition princeps of Rome by Aloisio Zannetti [8].  

In the chapter of the Compendium Element: Euclidis (fol. 433-478), done 

through Clavio’s principles and commentaries of the Euclidis elementorum libri 

XV, in the edition at his disposal of 1589, he discusses extensively the heptagon 

in the Prob. 16 Propos. 16 del LIV [36]. It is much more extensive, than in 

Scholion II of L. IV, f Vicent Accoltum’s 1574 edition princeps of Roma, L.IV, 

Scholion II [37]. 

In the section dedicated to the Architectura militaris (fol. 597-626) he 

refers to the Latin edition of Lyon by Philippe Borde Les fortifications du 

chevalier Antoine de Ville (1640) by Antoine De Ville (1596-1657). There he 

solves the construction by angulation and triangulation, as he technically 

constructs the regular fortification [38] (Figure 8a), as well as in his edition 

princeps, 1629 French edition of Lyon by Irenée Barlet [39], and the 

Architectura militaris moderna (1647) by Matías Dögen (1605-1672) who 

develops it by angular division (Figure 8b) [40]. 

In Spain the methods of Juan de Arfe (1535-1603) of De varia 

commensuracion para la escultura y architectura (1585) [41] (Figure 9a) had 

been published. It had the same geometrical matrix as Abu’l-Wafa Al-Buzjani, 

(ca. 993-1008), Hans Hösch von Gmünd (1472) and Matthäus Roriczer (1488). 

Other methods are the construction by means of the set squarein the Andalusian 

tradition of Diego López Arenas (+c.1640) in the Primera y segunda parte de 

las reglas de la carpintería (1616) [42] (Figure 9b) and fray Lorenzo de San 

Nicolás (1593-1679) in the Arte y Vso de Architectvra (1633) [43]. Also we can 
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find the angular division of the Compendio de Arquitectura y Simetria de los 

Templos (1681) by Simón García collected from Rodrigo Gil de Hontañón 

(1500-1577) [44] (Figure 9c), and which chronologically the Dominican friar 

could have known. 

 

 
Figure 8. Layout of the heptagon: (a) Les fortifications du chevalier Antoine de Ville 

(1640) Antoine De Ville [38, Planche XXVIII, https://gallica.bnf.fr/ark:/12148/image, 

Gallica], (b) Dramburgensis marchici Architectura militaris moderna (1647), Matías 

Dögen [40, Fig. XXI, https://archive.org/details/bub_gb_FdUQj0ypih0C]. Interpretation 

by the authors. Detail: Terms of Use, Licence, Public Domain Mark. 

 

 
Figure 9. Layout of the heptagon: (a) Juan de Arfe (1585), (b) Diego López Arenas 

(1616), (c) Simón García (1681). Author’s figure. 

 

It could be speculated whether the first part of the work devoted to the 

construction of the heptagon is a consequence of the heretical correction of 

Kepler, or whether it is a consequence of his unique construction of the regular 

figure. According to the arrangement of the different chapters, everything 
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suggests that Kepler’s judgment is produced after having achieved, supposedly, 

the construction of the heptagon through a commensurable proportion with an 

integer base (9/4). It serves him to construct the isosceles triangle proper to the 

heptagon (9,4,9). The usual practice for the resolution of the heptagon was 

achieved from the trigonometric division as José de Zaragoza did, in the 

Geometria practica Euclidis: problemata continens (1672) [45], applied by 

Simón de Stevin (1548-1620) in Lib2. pro.7 of the Mathematicarum 

hypomnematun de Geometriae Praxi (1605) [46]. 

Fray Ignacio approaches the heptagon’s construction from the classical 

principle of dividing the isosceles triangle own to the regular heptagon, defined 

as one in which each of the two angles at the base is three times the vertical 

angle (Figure 6b). He reaches it through the consectary I, that triangle of double 

and sesquiquadratic proportion referred to its base. In a second consectary he 

indicates that José Zaragoza’s construction is made with the trigonometric tables 

and therefore it is not geometric. He will add a third consectary, in which he 

refers the triangle (9,4,9) with the parallelogram formed by the base and 5/9 

parts of the side (4,5,4,5) (Figure 6c). He prepares the Euclidean geometric base 

theorem to construct the heptagon, renouncing the trigonometric bases because 

he considers them numerical. He asserts that the proof of the theorem was to 

deduce a geometric impossible, such as the part and the whole being equal 

through the axiomatic relation (9:4) (Figure 10). 

 

Figure 10. The construction of the regular heptagon by fray Ignacio Muñoz (1684)  

[14, p. 16-17]. Interpretation by the authors. 

 

Fray Ignacio did not solve the impossible solution of the heptagon that 

Kepler advanced and that Carl Friedrich Gauss (1777-1855) proved in Section 

VII, Statements (361-366) of the Disquisitiones Arithmeticae (1801) [47]. He 

proved the impossibility of the geometrical construction of the heptagon. His 

axiomatic principle of the ratio (9/4), which he never revealed its origin, defined 
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it as the geometrical impossible. It constitutes the scientific methodological 

genesis, and based on it, he develops the mathematical proof. 

 

5. The ‘Manifiesto geometrico’ versus ‘Harmonices mundi’ 

 

In the dialectic on the knowledge of the heptagon between Fray Ignacio to 

Kepler, a certain paradox arises. Kepler affirms that no one can consciously 

construct this figure and that doing so it would be within the realm of chance. At 

the same time, he criticizes Kepler for not having demonstrated that the figure 

was unconstructable, which it was true, according to Gauss’s arguments. Fray 

Ignacio requires in the Manifiesto Geometrico a mathematical proof for the 

construction of the heptagon based on his geometrical experience from the 

compass. An example of this it is the chapter of the Observationes (fol. 770-784) 

in which he defines the compass of the Duke of Béjar (Figure 11a) as 

planifolado universival and describes the pantographic compass (Figure 11b) 

similar to the one in Clavius’ Geometria practica [35, p. 5] (Figura 11c). 

 

 
Figure 11. Compass instrument: (a) Compass of the Duke of Béjar, Observationes 

diversarum artium (1669), Ignacio Muñoz (fol.770) [BNE Mss/7111]; (b) pantographic 

compass, idem, (fol.784); (c) Geometria practica (1606), Cristoforo Clavio [35, p. 5]. 

Detail: Terms of Use, Licence referenced Public Domain Mark. 

 

The construction is based on the isosceles triangle of the Kepler’s 

heptagon (B,E,F) (9,4,9). The main diagonal (BF) (9) has points of intersection 

with the other two diagonals, I and K, where (BI = 4) (Figure 12a). Kepler in 

Harmonices mundi demonstrates the multiple possibilities of division of the 

diagonal BF that comply the proportional conditions assigned (Figure 12b). 
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Figure 12. The regular seven-sided polygon: (a) Manifiesto Geometrico (1684), fray 

Ignacio Muñoz [14, fig. 3]; (b) Harmonices mundi libri V (1619), Johannes Kepler  

[1, p. 32-33]. Interpretation by the authors. Detail: Terms of Use, Licence, Public 

Domain Mark. 
 

He concludes that no regular heptagon could have been constructed by 

anyone in a conscious and deliberate way through the isosceles triangle. It also 

cannot be achieved with this methodology either. In spite of Kepler’s 

considerations of the unknowability of the figure for these reasons, Fray Ignacio, 

more than half a century later, insists on the possibility of its construction by 

means of an integer base proportion between the side of the heptagon (EF) of 4 

units, with the diagonal of the isosceles triangle (BF) of 9 units. They both are 

commensurable and of finite solution. Here it begins the heretical dispute of 

Fray Ignacio Muñoz with Johannes Kepler, since the heptagon and the number 

seven represented the finite Creation (Genesis 1.1-2). 

 

6. The background of fray Ignacio Muñoz, the ‘geometia fabrorum’ 
 

The mathematician and Noyon’s canon, Charles Bovelles (1478-1567) 

quoted Fray Ignacio in the Observationes (fol. 47). He is the author of the 

Geometricum Introductorium (1503) published in Paris in 1510, in which he 

constructs the heptagon from the hexagon of the side of the semidiameter of the 

circle [48] (Figure 13a). Part of the work is translated as Geometrie en Françoys 

(1511) in which he will include a new method through the triangle formed by 

two contiguous sides and the diagonal between the opposite vertices [49] (Figure 

13b). Years later he wrote the Livre singulier et utile, touchant l'art praticque de 

geometrie (1542). He acknowledged that a figure as important for Christian 

symbolism as the heptagon, as it is the number in which God creates the 

perfection of the world, did not appear in Euclid’s Elementa (c.325 - c.265 BC). 

He defines a new layout of the heptagon by angular division (Chap. 2.60) [50] 

(Figure 13c), proved in the work Geometrie practique (1547) [51]. He deals with 
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the decomposition of up to four types of inner isosceles triangles proper to the 

heptagon. 

 

 
Figure 13. Drawings of the heptagon by Charles Bovelles: (a) Libellus de Mathematicis 

rosis (1510) [48, p. 196 r, https://gallica.bnf.fr/ark:/12148/bpt6k3142945/f240.image],  

(b) Geometrie en Françoys (1511) [49, p. 19r, http://www.bvh.univ-tours.fr/Consult/con 

sult.asp?numtable=B410186201_I958 &numfiche=715&=3&offset=0&ecran=0],  

(c) Livre singulier et utile, touchant l’art praticque de geometrie (1542) [50, p. 26v, 

https://numelyo.bm-lyon.fr/f_view/BML:BML_00GOO0100137001100489900]. 

Interpretation by the authors. Detail: Terms of Use, Licence referenced Public Domain 

Mark. 

 

Gothic architecture had to adapt to the new liturgy of the Prochiron, vulgo 

rationale divinorum officiorum (1291), by Guillermo de Durando (1230-1296).  

It resulted the creation of semi-circular ambulatories, where the different relics 

of saints were laid down in the radial chapels. The familiar and guild tombs 

could be seen without visual obstacles and orderly. This new vision replaces the 

allegorical one of the Gemma animae (c.1120) by Honorius of Autun (1080-

c.1153) that the Romanesque had had with the linear relationship between the 

apse and the apsidioles. Then there will be a radical change in the conception of 

spaces, thus encouraging semi-circular apses with radial chapels, which are 

arranged in the form of five or seven chapels around them. 

The cathedral of Noyon known to Bovelles has a polygonal apse with five 

radial chapels, like Burges, Reims, Sens or Tours. He knew other episcopal sees 

with seven chapels like Amiens, Beauvais or Chatres, which are built on the 

basis of a 14-sided polygon. They project out radially half side of the heptagon 

on the chord of the apse, a polygon which Kepler also refers to as 

unconstructable. The figure of the heptagon does not appear in Euclid’s 

Elementa translated by Adelard of Bath (1075-1166) in 1142, although the 

pentagon (L. IV. Prop. 14) [52] and the decagon do (L. IV. Prop. 16) [52, p. 110-

111]. They can be used for pentagonal apses. The heptagon does not appears in 

Ptolemy’s Almagesto (c.85-165) transferred by Gerard of Cremona (1114-1187) 

around 1175, although the rest of the regular polygons do appear [53]. The 
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Gothic masters could not learn from Elementa and Almagest, which they could 

access directly, or through the bishops or the cathedral chapter, since there was 

no evidence of the figure. 

 

 
Figure 14. Parchment by Antoni Guarç (ca. 1345-1380) [ACTo, Fábrica 49] Tortosa:  

(a) proportion of the trace, (b) auxiliary traces of drawing lace, (c) redrawing of the 

parchment. Interpretation by the authors. Detail: ACTo, Fábrica 49, reproduced by kind 

permission of ACTo 

 

On the other hand, evidence has been found in the design and construction 

of heptagonal apses from the relationship between the width of the radial chapels 

and the radius of the ambulatory. It shows the geometric relationship of the 

proportion (18/8), in other words the relationship of 9 modules between the 

width of the lateral nave with 8 modules and the width of the radial chapel. This 

is obvious in the project by Antoni Guarc (c.1345-1380), [Archivo Capitular 

Catedral de Tortosa (ACTo), Fabrica 49] for the cathedral of Tortosa (Figure 

14a). In order to draw the seven chapels of the apse, Guarc abates the measure of 

the radial chapel of 8 modules on the diameter of the presbytery of module 18 

(Figure 14b). He uses the numerical ratio (18/8) between the central nave and 

the side chapel, or in other words (9/8) between the ambulatory width and the 

radial chapel. Guarc’s layout and the general layout of the apse built between 

1383 and 1435 have the same genetic structure (Figure 14c).  

Considering the relationship between the radius, the 18 modules of the 

semi circumference of the ambulatory, and the 8 modules of the radial chapel, a 

geometrical and at the same time arithmetically metrological solution is 

established. According to the theory of proportions; if the presbytery has a width 

of 18, the radial chapels must have 8 modules. In the apse, to build a chapel of 3 

canas (24 palms), a radius of 6 canas and 6 palms (54 palms) is needed. So it 

happens in the layout of the apse of Tortosa’s cathedral (Figure 15a), while the 

old Romanesque cathedral of 1158 pre-existed, and therefore they could not 

trace the circumference circumscribed to the radial chapels (Figure 16a). 
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Figure 15. (a) Plan of the apse of Tortosa’s Cathedral (1383-1435), (b) methods for the 

layout of heptagonal apses, (c) constructive evolution. Author’s figure. 

 

 
Figure 16. Tortosa’s Cathedral stakeout: (a) chapel’s radial plant with the layout of the 

Romanesque cathedral, (b) geometric proportions that allow the construction of an apse 

without knowing its centre, (c) construction process of the apse of the Gothic Tortosa’s 

cathedral (1383-1435) over the Romanesque cathedral (1158). Author’s figure. 

 

Both in the Guarç parchment and in the layout of the apse, the ratio 

between the width of the nave (9/8) and the side chapel is used. It is the same as 

the ratio (18/8) between the ambulatory and the chapel. The simulation of these 

geometrical processes, which neither builders nor mathematicians had at their 

disposal, show that the results applied with this ratio (9/8) are more precise than 

those developed by the geometrical and mathematical treatises of the XV-XVII 

centuries [54].  
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In the Archive of Tortosa’s Cathedral Chapter, some Neoplatonic codices 

are preserved, including that of Martianus Capella of Nuptiis Philologiae et 

Mercurii (f. 430) [ACTo 80]. It proposes two types of lines: commensurable 

rhētós, and incommensurable álogos. The layout of the 14-sided polygon used in 

the Guarç elevation, as in the execution of the Tortosa apse, uses the ratio (9/8). 

In the layout of the Gothic apse, the two chapels belonging to the straight section 

of the apse and the other seven located in the apsidal semicircle must have the 

same measure in their width. They have to keep the same proportion with the 

radius and also to have a commensurable measure of 3 canas. In terms of 

Martianus Capella the construction of Antoni Guarç (ca. 1345-1380) would be a 

line with a rhētós measure (Figure 17b). If it would have been used the method 

of the heptagon layout in the tradition of Mohammad Abu’l-Wafa Al-Buzjani, 

(ca. 993-100) (Figure 17a) later used in the Geometrie Deutsch of Hans Hösch 

von Gmünd (1472) and Matthäus Roriczer (1488) (Figure 17c) or those of 

Albert Dürer’s Underweysung der Messung (1525) (Figure 17d-e), the 

construction would be álogos, since the mean of the line would be 

incommensurable. Moreover, Guarç’s ratio (9/8) is understood in other cathedral 

codices, as in Calcidius’ translation of Plato’s Timaeus (f.350) [ACTo 80], and 

in Macrobius’ Comentarii In Somnium Scipionis [ACTo 236] (f.400), as the ratio 

between the integer and its octave (1+1/8), which is called epogdous. 

 

 
Figure 17. Application of the heptagon geometric methods in the construction of Gothic 

apses: (a) Abu’l-Wafa Al-Buzjani (ca. 993-1008), (b) Antoni Guarç (ca. 1345-1380),  

(c) Matthäus Roriczer (1488), (d) Albert Dürer LII.11 (1525), (e) Albert Dürer LII.15 

(1525). Author’s figure. 

 

Therefore, the proportion used 18/8 (9/8) was well known to the 

developers and builders who built Tortosa’s cathedral. The ratio of 18/8 

arithmetically based (a/b) as well as geometrically based, is similar to the one 

proposed by the Dominican friar for his isosceles triangle of 9/4. Therefore the 
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method in the Manifiesto Geometrico could be used to construct a heptagonal 

apse obtained from the 14-sided polygon (Figure 15a). It would be, among those 

published with geometric development, the most accurate (Figure 15b). 

 

 
Figure 18. (a) Comentarii In Somnium Scipionis de Macrobio, (ACTo. 236, inter fol. 51 

v-52 r); (b) interpretation by the authors, Ratio (9:4). Author’s figure. Detail: (ACTo. 

236) reproduced by kind permission of ACTo). 

 

The measurements are related to numerical modulations, the diapente 

(3:2), the diatessaron (3:4) and the tone (9:8) well known to the cathedral 

canons who had read in the [ATCo 80] and the [ACTo 236] (Figure 18), and 

similar to the (9:4) of fray Ignacio Muñoz. Neither the method nor the 

proportion of Antoni Guarç (ca. 1345-1380) [ACTo, Fabrica 49] appears in 

scholarly treatises, but it is an instrument of the geometria fabrorum that 

provides a solution that is simultaneously geometrical and arithmetical. In the 

Tortosa’s cathedral, the measurement of the chapel which it measures 3 canas in 

length (24 palms) and all the measurements of the apse, both in plan and in 

section, are implemented as an algorithm. 

Fray Ignacio Muñoz proposes the third problem as a conclusion of the 

first part of the Manifiesto Geometrico [14, p. 19]. How to construct a regular 

heptagon without the circle that circumscribes it, which there is no solution. The 

question is the same as the Gothic builders had in the design of their 

apsesbecause in many cases the Gothic cathedrals replaced the Romanesque 

churches. This happened as the primitive presbyteries continued to function 

while the new cathedral apse was being built. The geometrical solution is 

achieved by using some triangles such as those of the Dominican friar, (9, 8+3/4, 

2), (18,8,18) and known trapezoids (8,9,4,9) [55] (Figure 16b). They allow the 

construction of the radial chapels without determining the circumscribed 

circumference (Figure 16c). These figures of Guarc's metrology of base (18/8) or 

Fray Ignacio’s (9/4) are similar to those of Liber II. Prop.77 of the Hibbur ha-

Meshihah ve-ha-Tishboret (1116) by Abraam Bar Hiia (1070-1136) [56] and the 

Practica geometriae’s (1223) by Leonardo Pisano (c.1180-1250) 
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These geometric methods to trace the figure without knowing its centre 

based on triangulation, could also be solved from the external or inner angle of 

the heptagon. This tradition starts from the French military architecture [57] and 

known by fray Ignacio Muñoz through the authors cited in the Observationes 

diversarum artium (1669), such as Matías Dögen in the Architectura militaris 

moderna (1647). He simplifies the angular division by means of the proportion 

(7/4) for its external angle (Figure 8b), very similar to the one used by Charles 

Bovelles (1547) with the proportion (10/7), but in this case with inner angle 

(Figure 13c). Indeed he specifies that nobody had solved geometrically the 

division of the right angle in seven parts.  

He also knows the solution of the Latin edition of 1640 by Antoine De 

Ville, in Les fortifications du chevalier Antoine de Ville [38] (Figure 8a) and the 

solution for any polygon already published in the first French edition [39, p. 38]. 

These methodologies of heptagon layouts come from Le Gouvernail d'Ambroise 

Bachot (1598) by Ambroise Bachot (d.1587) [58] in which the approximation of 

the angle between its sides is (128+1/2)º (Figure 19a). In La fortification 

reduicte en art (1600) by Jean Errard (1554-1610) [59] the measure of the 

central angle is (51+3/7)º. Both of them are used to determine the walls and 

flanks of defensive fortifications. 

 

 
Figure 19. The construction of the heptagon in military engineering: (a) Le Gouvernail 

(1598), Ambroise Bachot, general solution of the construction of regular polygons [58,  

s.n., https://gallica.bnf.fr/ark:/12148/bpt6k15139955]; (b) La fortification reduicte en art 

(1600), Jean Errard, construction of the heptagon [59, p. 22r-23, https://gallica.bnf.fr/ark: 

/12148/bpt6k85639h.image]. Interpretation by the authors. Detail: Terms of Use, 

Licence referenced Public Domain Mark. 

 

Therefore the Dominican friar must not have known the principle of the 

Gothic masters for tracing the heptagonal apses without knowing their centre. 

He also ignored the property of the precision of the proportion (9:4) between the 

diameter of the circumference and the 14-sided polygon for its construction.  
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Figure 20. Geometric constructions with the pentagonal base Der furnembsten, 

notwendigsten, der gantzen Architectur angehörigen mathematischen vnd mechanischen 

Künst eygentlicher Bericht (1547), Walther Hermann Ryff, [https://archive.org/details/ 

derfurnembstenno00ryff]: (a) construction of the heptagon of side 5 through the 

pentagon of side 7 [60, p. XXX], (b) construction of the enneagon of side 5 through the 

pentagon of side 9 [60, p. XXXI]. Interpretation by the authors. Detail: Terms of Use, 

Licence referenced Public Domain Mark. 

 

 
Figure 21. (a) Metric solution of the construction of the heptagon of fray Ignacio Muñoz 

[14, Fig. 3], (b) alternative solution to the construction of fray Ignacio Muñoz [14, Fig. 

3]. Interpretation by the authors. Detail: Terms of Use, Licence referenced Public 

Domain Mark. 

 

He doesn’t know the thesis of Walther Hermann Ryff (c.1500-1548) of 

the, Der furnembsten, notwendigsten, der gantzen Architectur angehörigen 

mathematischen vnd mechanischen Künst eygentlicher Bericht (1547) in which 

he theorizes about the construction of the polygons (5, 7, 9, 11, 13...). He starts 

from the isosceles triangle of integer base in which he creates a relationship 
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between the pentagon of commensurable construction with other polygons. The 

heptagon is constructed through the isosceles triangle of base 5 and sides DE and 

DF which are equivalent to the equal sides of the pentagon AB and AC of side 7 

and whose measure would be ABC (11.27568241, 7, 11.27568241). The 

solution to the isosceles triangle of the heptagon DEF is (11.23489801, 5, 

11.23489801). It is observed that the measures of the diagonals of the figures are 

not equal (Figure 20a). In Fray Ignacio’s solution the heptagon would have been 

(11.25, 5, 11.25). He uses the same methodology for the construction of the 

nine-sided polygon, whose base is also 5. He uses the sides of the isosceles 

triangle of the pentagon of side 9, ABC (14.56230590, 9, 14.56230590) and 

whose solution for that of the enneagon GHL would be (14.39692621, 5, 

14.39692621) (Figure 20b) [60].  

Pietro Cataneo (d.1569) in L’ architettura (1567) deals with the 

construction of the heptagon and the generalized solution of odd polygons with a 

system similar to Ryff’s. He divides the side of the circumscribed equilateral 

triangle in as many parts as sides we want to divide the circumference. He takes 

these three units as the side of the polygon we want to construct [61]. 

In the solution of Fray Ignacio the sides of the heptagon are not equal, 

having three different results; [4.0000000, 4.01603303, 4.01603303, 

4.01603303, 4.01603303, 4.01603303, 3.998575505, 3.998575505]. The cause 

of this configuration is his false mathematical basis of the isosceles triangle and 

therefore the relationship of the side (EF = 4) of 4 units. The approximation of 

the true magnitude of the major angle of the isosceles triangle is [77.14285714º], 

as opposed to the one deduced by Fray Ignacio [77.16041159º] (Figure 21a). 

If he had not this statement of the construction through the isosceles 

triangle proper to the heptagon, which Kepler had refuted as non-constructable, 

he could have stated: ‘In the circumscribed circumference of the isosceles 

triangle of the heptagon (9, 4, 9), the side of the heptagon is equal to the base of 

this triangle (4)’. With this new statement, five of the sides would have (4 u) 

[4.0000000, 4.0000000, 4.0000000, 4.0000000, 4.0000000, 4.0000000, 

4.01783265, 4.01783265], with a computer approximation of the side of the 

heptagon of [4.00509692], and therefore more precise than the one he proposes 

(Figure 21b). 

The mathematical principle of the division of the heptagon on the basis of 

the isosceles triangle (9,4,9) and the numerical inequality of the different results 

of the measurement of its sides, which Fray Ignacio could not prove, will be 

discussed by the King’s engineer Jorge del Pozo (d. 1676). He had occupied the 

Chair of Mathematics, Fortification and Artillery (1667-1678), dependent on the 

Council of War and he wrote the booklet Responde Jorge del Poço desde la otra 

vida, como catedratico que fue de mathematicas en la Chanuerga, al papel 

impresso en Bruxelas este presente año de 1684 sacado a la luz por el padre 

maestro Fray Ignacio Muñoz [M-RAH, 9/2782]. Despite this, Niccolò Coppola 

(+ 1697), does not mention the work of Fray Ignacio in the Formacion exacta 

del heptagono: geometricamente hallada por medio de la linea commensuratriz 

del quadrante in which he discusses the trisection of the angle that had been 
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published in Mateo Fernández de Rozas (+1697) that same year in Madrid as the 

Geometric solution of the famous angle trisection problem [62]. 

 

7. Conclusions 

 

The first part of the Manifiesto Geometrico (1684) by Fray Ignacio Muñoz 

wants to demonstrate mathematically the construction of the heptagon by means 

of a deductive methodology. It is based on an axiomatic principle of the 

isosceles triangle of the heptagon (9,4,9) which is erroneous, but which he 

argues rigorously. The axiomatic principle of the proportion (9/4) on which he 

bases the construction of the polygon, and which he never reveals, could be 

interpreted in different ways. From the arithmetical point of view as the relation 

9/4 = 4/4+4/4+2/8 = 2+1/4, from the geometrical as the relation of a double 

square and its fourth, from the musical proportion as the double plus a 

sesquiquiquadrate  and from the astronomical in the reference to the distance to 

the Sun between Jupiter 9 and Venus 4.  

The second part becomes an apology against Johannes Kepler, who had 

argued in Harmonices mundi libri V (1619) the unknowability of the heptagon as 

an infinite figure, and hence the argumentation of the heretical principle of the 

German astronomer. In Genesis the Creation is finite, in seven days, and in the 

vision of the Kepler’s indeterminate and unconstructable, hence the Dominican's 

inquisitive outburst. On the other hand, the modulation (9:4), as well as the 

construction of the heptagon without inscribing it in a circle, proposed in the 

Manifiesto Geometrico, was known in the geometria fabrorum. It was used for 

the construction of the apses of the Gothic cathedrals with seven radial chapels 

whose bases are in the neoplatonic transmission of the proportion of numerical 

whole base. Therefore, commensurable of Chalcidius, Capella and Macrobius 

that the developers of these constructions knew well, and that Fray Ignacio must 

not have known. 

Fray Ignacio Muñoz died without knowing that his method for the 

construction of the heptagon is one of the most precise methods of practical 

geometry that has been developed to date. This fulfils Kepler's prediction that 

either it cannot be constructed, or that if it is constructed, it is not possible to 

verify it.  

The geometrical contributions of Fray Ignacio Muñoz did not advance the 

mathematical science of the 17th century. Nevertheless, his good knowledge 

helped him in the practical resolution of the problems that a missionary needed 

for the work of evangelization. Especially for the dogmatic safeguarding of the 

Catholic faith, carried out by the reference of the Index Librorum Prohibitorum 

et Expurgatorum, in which the 17th century Inquisition had put on trial 

astronomers such as Copernicus, Galileo or Giordano Bruno. 

The Manifiesto Geometrico can be understood as a palimpsest of the 

geometric tradition for the construction of the heptagon in the seventeenth 

century. A superimposed knowledge, although unknown to the author, in the 

geometria fabrorum of the builders of the Gothic apses. The magister operis, 
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also probably without knowing it, are the neusis constructions of the heptagon of 

Greek geometry. 
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[40] M. Dögen, Dramburgensis marchici Architectura militaris moderna: varijs 
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